

Enriching Lives

KIRLOSKAR ROMAK PUMP - RMK

ISO 2858 / DIN EN 22858 / ISO 5199

RANGE

Discharge capacity (Q)	$:$	Up to $300 \mathrm{~m} / \mathrm{hr}$
Delivery head (H)	$:$	Up to $150 \mathrm{~m}($ at 2900 rpm$)$
Available nominal speed (n)	$:$	$2900,1450,980 \mathrm{rpm}$ at 50 Hz and
		$3500,1750,1150 \mathrm{rpm}$ at 60 Hz.
Max. operating pressure (P)	$:$	16 bar (25 bar$)($ Max. Suction pressure 5 bar$)$
Temperature range (t)	$:$	$-50^{\circ} \mathrm{C}$ up to $+180^{\circ} \mathrm{C}$
Pump Sizes (DN)	$:$	32 mm to 100 mm
Total Number of Models	$:$	22

APPLICATIONS:

- RMK pumps are used for handling various types of Clear / Clean chemical liquids without any suspended particles from various process industries
- RMK pump is Magnetic Drive Pump comprising Permanent magnets.
- Pump dimensions are fully confirming to ISO 2858/DIN EN 22858 and technically meeting requirements of ISO 5199.
- Sealless pump.

DESIGN

Casing:

The casing has axial suction and top centre line delivery with self venting design. Smooth hydraulic passage ensures high efficiency. Delivery flanges and supporting feet are cast integral with the casing.

Impeller:

The impellers are of enclosed type. Hydraulic balancing of impellers is achieved by balancing holes or back vanes depending upon magnitude of hydraulic axial thrust. The impellers are statically and dynamically balanced.

Impeller Shaft:

Impeller shaft is supported between Plain Silicon Carbide bush bearings. The shaft is critically machined and ground to maintain geometric accuracies.

Pump Shaft (Drive Shaft):

Pump shaft is supported between antifriction ball bearings

Wear Rings:

Replaceable wear rings are provided on Casing and Impeller.

Impeller Nut:

Impeller nut is positively locked on shaft with the help of Helicoil insert.

Plain Bearing Unit:

The Silicon Carbide Bush Bearings are used to take care of Radial and Axial thrust exerted on impeller. Bearing is lubrication with the help of same pumping liquid. These are mounted on Duplex material components as a standard scope.

Inner Magnet Ring \& Outer Magnet Ring:

These are permanent magnets glued on steel metallic case.

Can:

Can made of Hastelloy material. Designed to with stand 24 bar hydro test pressure.

Impeller Rotor:

Impeller rotor houses inner magnet rings. After mounting inner magnet rings, Tube is welded to prevent magnet from getting contact of pumping liquid.

Drive rotor:

Drive rotor houses outer magnet rings.

Lantern Bracket and Bearing Housing:

Lantern bracket and Bearing housing combine supports Drive rotor assembly and Drive shaft. Antifriction Ball Bearings are Deep groove ball bearings which are available in 2 options of bearing lubrication

1. Oil lubricated 2. Pre-lubricated sealed bearings

Direction of Rotation:

Clockwise when viewed from driving end.

Drive:

Pumps can be driven by an electric motor.

1. Centerline delivery with self venting
2. Back pullout type design
3. Designed for suction pressure $5 \mathrm{~kg} / \mathrm{cm}^{2}$
4. Flange drilling : ASME B 16.5 class 150 RF (std) and class 300 RF
5. Auxiliary tapping optional PN 16 and PN 25 as per DIN standard optional NPT
6. Coupling

Flexible jaw type spacer coupling
7. Performance testing standard ISO 9906 Gr.2B
8. Interchangeability of components among different pump sizes

Features With Respect To Safety And Condition Monitoring

? Zero leakage
? One-piece Hastelloy C Can for Safety
? Liquid protected Magnets for longer performance.
? Lantern bracket drain connection for Leakage monitor
? Lantern bracket / Casing cover connection for Can / Liquid temperature monitor (Optional)

CROSS-SECTION WITH MAJOR COMPONENTS

PUMP SIZE	PUMP UNIT	PUMP DIMENSIONS						FOOT DIMENSIONS										SHAFT END				
		DEL	SUC	a	f	h1	h2	b	c	m1	m2	n1	n2	w	Øs 1	Øs2	e1	ød	1	t	u	y
32/13	5.1					112	140					190	140									
32/16	5.2	32	50			132	160					240	190									
32/20	5.3			80		160	180															
40/13	5.1					112	140					210	160									
40/16	5.2	40	65		385	132	160	50	14	100	70	240	190	285	14	15	110	24	50	27	8	100
40/20	5.3					160	180					265	212									
50/13	5.1					132	160					240	190									
50/16	5.2	50	80	100		160	180					265	212									
50/20	5.3 5.1	65	100			160	200	65		125	95	280	212									
32/26	7.3	32	50	100		180	225					32	25									
40/26	7.3	40	65			18	2															
40/32	7.4			125		200	250					345	280									
50/26	7.3	50	80	125		180	225	65	14	125	95	320	250		14							
50/32	7.4				500	225	280					345	280									
65/16	7.1			100		160	200					280	212	370		15	110	32	80	35	10	140
65/20	7.2	65	100			180	225					320	250									
65/26	7.3					200	250	80	16	160	120	360	280		18							
80/16	7.1					180	225	65	14	125	95	320	250		14							
80/20	7.2	80	125	125			250					345	280									
80/26	7.3					225	280	80	16	160	120	400	315		18							
100/20	7.2	100	125			200	280					360	280									

Note: These are tentative dimensions. Certified dimensions shall be submitted against order.

MATERIALS

MATERIAL OF CONSTRUCTION

Component Description	Standard MOC	Option 1	Option 2	Option 3	Option 4	Option 5
Pump Casing	Stainless Steel ASTM A351 M - CF8M	ASTM- A890/890M CD4MCuN-1B Duplex	ASTM- A890/890M- CE3MN-5A Super Duplex (UNS 32760)	Alloy 20 ASTM B473 UNS8020- ALLOY20	ASTM A494 - Hastelloy B	ASTM A494 - Hastelloy C
Casing Cover	Stainless Steel ASTM A351 M - CF8M					
Wear Ring	Stainless Steel ASTM A351 M - CF8M					
Impeller Shaft	Stainless Steel ASTM A276 Type 316 and 316L	Duplex ASTM A240M -UNS S31803	ASTM-A276 UNS 32760 (UNS 32760)	Alloy 20 ASTM B473 UNS8020- ALLOY20	MONEL BS30 (K-Monel 500	76-NA18
Plain Bearings	Silicon Carbide					
Magnets	Samarium Cobalt					
Can	Hastelloy C4					
Pump Shaft	Stainless Steel ASTM A276 Type 316 and 316L					

MATERIAL STANDARDS - GENERAL INFORMATION

Material Type	Indian Standard (IS)	American standard (ASTM)	DIN
Cast Iron Cast Iron	IS 210 Gr. FG 260	ASTM A48 Class 40	(0.6025)DIN 1691 GG25
Spheroidal Graphite Cas SG Iron (Ductile Iron) SG Iron (Ductile Iron)	IS 1865 Gr 400/15 IS $1865 \mathrm{Gr} 500 / 7$	A536, 60-40-18 A536, 65-45-12	(0.7040)DIN1693 GGG40 (0.7050)DIN1693 GGG50
Carbon steel Carbon steel (Wrought) Carbon steel (Wrought) MS Steel	IS 1570 (part II) Gr. 40C8 IS 1570 (part II) Gr. 20C8 MS IS 2062 - Fe 410W A	ASTM A107 Gr. 1040 ASTM A107 Gr. 1020 ASTM-A283 GR.D	$\begin{aligned} & (1.1186) \text { C40E/CK40 } \\ & (1.0402) \text { C22 } \\ & \text { DIN } 1700 \text { GR ST4-2 FABRICATED STEEL44 } \end{aligned}$
Cast Steel Grades Cast steel		ASTMA 216 Gr. WCB	1.0619(GS-C25)
Cast Stainless Steel Stainless Steel CF8M Stainless Steel CF8M Stainless Steel CF3M Stainless Steel CF3M Stainless Steel CF8 Stainless Steel CF3	IS 3444 Gr. 4 IS 3444 Gr. 4 IS 3444 Gr. 16 IS 3444 Gr .16 IS 3444 Gr. 1 IS 3444 Gr .15	ASTMA 351 Gr. CF8M ASTMA 743 Gr . CF8M ASTMA 351 Gr. CF3M ASTMA 743 Gr . CF3M ASTMA 351 Gr . CF8 ASTMA 351 Gr. CF3	1.4408(GX5CrNiMo19-11-2) 1.4408(GX5CrNiMo19-11-2) 1.4409(GX2CrNiMo19-11-2) 1.4409(GX2CrNiMo19-11-2) 1.4301(X5CrNi18-10) 1.4306(X2CrNi19 11)
Cast Chromium Stainles Stainless Steel CA15 Stainless Steel CA15 Stainless Steel CA6NM Stainless Steel CA6NM	IS 3444 Gr. 10 IS 3444 Gr .10 IS 3444 Gr .24 IS 3444 Gr .24	ASTMA 217 Gr. CA15 ASTMA 743 Gr. CA15 ASTMA 487 Gr. CA6NM ASTMA 743 Gr . CA6NM	1.4106\&1.448(DIN17445 GX12Cr14) 1.4106\& 1.448 (DIN17445 GX12Cr14) 1.4313\&1.4317(GX5CrNiMo13-4) 1.4313\&1.4317(GX5CrNiMo13-4)
Chromium StainlessSte Stainless steel 410 Stainless steel 420 Stainless steel 431 Stainless steel 316 Stainless steel 316L	Matterial IS 1570 (part V) Gr. X12Cr12 IS 1570 (part V) Gr. X20Cr13 IS 1570 (part V) Gr. X15Cr16Ni2 IS 1570 (part V) Gr. X04Cr17Ni12Mo2 IS 1570 (part V) Gr. X02Cr17Ni12Mo2	ASTMA 276 type 410 ASTMA 276 type 420 ASTMA 276 type 431 ASTMA 276 type 316 ASTMA 276 type316L	$\begin{aligned} & 1.4006(\mathrm{X} 10 \mathrm{Cr} 13) \\ & 1.4021(\mathrm{X} 20 \mathrm{Cr} 13) \\ & 1.4057\left(\mathrm{X}_{2} \mathrm{CrNi17)}\right. \\ & 1.4401 \text { (X5CrNiMo17122) } \\ & 1.4404(\mathrm{X} 2 \mathrm{CrNiMo} 1810) \end{aligned}$
Cast Duplex Steel Duplex Steel 1A Duplex Steel 2A Duplex Steel 3A Super Duplex steel 4A Super Duplex steel 5A		ASTMA 890 Gr . CD4MCu ASTMA 890 Gr . CE8MN ASTMA 890 Gr. CD6MN ASTMA 890 Gr . CD3MN ASTMA 890 Gr . CE3MN	$25 \mathrm{Cr}-5 \mathrm{Ni}-\mathrm{Mo}-\mathrm{Cu}$ 24 Cr -10Ni-Mo-N 25Cr-5Ni-Mo-N 25Cr-7Ni-Mo-N 24 Cr -10Ni-Mo-N
Non Ferious Materials			

Bronze	IS 318 Gr. LTB2 (CuSn5Zn5Pb5C)	ASTMB 584-C90500	DIN 1705 Rg 5
Phosphor Bronze	IS 28 Gr .1 (CuSn11PC)		
Zinc Free Bornze	IS 28 Gr .1 (CuSn10C)		

FAMILY CURVES

RMK PUMPS FAMILY CURVE AT 1450 RPM

RMK PUMPS FAMILY CURVE AT 2900 RPM

ABOUT KBL

Kirloskar Brothers Limited (KBL) is a world class pump manufacturing company with expertise in engineering and manufacture of systems for fluid management. Established in 1888 and incorporated in 1920, KBL is the flagship company of the \$ 2.1 billion Kirloskar Group. KBL, a market leader, provides complete fluid management solutions for large infrastructure projects in the areas of water supply, power plants, irrigation, oil \& gas and marine \& defence. We engineer and manufacture industrial, agriculture and domestic pumps, valves and hydro turbines.

In 2003, KBL acquired SPP Pumps, United Kingdom and established SPP INC, Atlanta, USA, as a wholly owned subsidiary of SPP, UK to expand its international presence. In 2007, Kirloskar Brothers International B.V., The Netherlands and Kirloskar Brothers (Thailand) Ltd., a wholly owned subsidiary in Thailand, were incorporated. In 2008, KBL incorporated Kirloskar Brothers Europe B.V. (Kirloskar Pompen B.V. since June 2014), a joint venture between Kirloskar International B.V. and Industrial Pump Group, The Netherlands. In 2010, KBL further consolidated its global position by acquiring Braybar Pumps, South Africa. SPP MENA was established in Egypt in 2012. In 2014, KBL acquired SyncroFlo Inc., the largest independent fabricator of commercial and municipal domestic water booster pumps.

To further strengthen its global position, in 2015, Kirloskar Pompen B.V. acquired Rodelta Pumps International, The Netherlands.

KBL has joint venture cooperation with Ebara, Japan since 1988 for the manufacture of API 610 standard pumps. Kirloskar Corrocoat Private Limited is a joint venture cooperation with Corrocoat, UK since 2006. KBL acquired The Kolhapur Steel Limited in 2007 and Hematic Motors in 2010.

KBL has eight manufacturing facilities in India at Kirloskarvadi, Dewas, Kondhapuri, Shirwal, Sanand, Kaniyur, Kolhapur and Karad. In addition, KBL has global manufacturing and packaging facilities in Egypt, South Africa, Thailand, The Netherlands, United Arab Emirates, United Kingdom and United States of America. KBL has 12,700 channel partners in India and 80 overseas and is supported by best-in-class network of Authorised Centres and Authorised Refurbishment Centres across the country.

All the manufacturing facilities at KBL are certified for ISO 9001, ISO 14001, ISO 50001, BS OHSAS 18001 and SA8000. In addition, the Kirloskarvadi plant is also certified for N \& NPT Stamp. KBL's corporate office in Pune is certified for ISO 9001 \& Sa8000.

The factories deploy Total Quality Management tools using European Foundation for Quality Management (EFQM) model.
The Kirloskarvadi plant of KBL is a state-of-the-art integrated manufacturing facility having Asia's largest hydraulic research centre with testing facility upto 5000 kW and $50,000 \mathrm{~m}^{3} / \mathrm{hr}$.

KBL is the ninth pump manufacturing company in the world to be accredited with the N and NPT certification by American Society of Mechanical Engineers (ASME).

Pumps | Valves | Hydro Turbines | Turnkey Projects
Water Resource Management | Irrigation | Power | Industry | Oil \& Gas | Marine \& Defence | Building \& Construction| | Distribution (Small Pumps) | Valves | Customer Service \& Spares

KIRLOSKAR BROTHERS LIMITED
 A Kirloskar Group Company Established 1888

Registered Office: Udyog Bhavan, Tilak Road, Pune-411002. Tel: $+91(20) 24440770$
Global Headquarters: "Yamuna", Survey No. 98/(3.7), Baner, Pune 411045. Tel: +91(20)27214444
Email: marketing@kbl.co.in, Website: www.kirloskarpumps.com, CIN No.: L29113PN1920PLC000670

OUR COMPANIES

